
THE AN EXAMPLE FROM CLASS . . .

- A total charge Q is uniformly spread out  over  a flat  disk

of  radius R . What  is the electric field @ a point  

directlyabove  or below the center  of the disk ?

- Spreading charge over a disk gives a surface charge

density ,
so  we  need to evaluate :
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- In this  case the charge Q is  spread unifyover the

surface , and the area  of a disk  is ITRZ
,

so the surface

charge density will be constant :  F = Q/itR2 .

- First
,

how do we describe the disk  and the point
where we  want to know E ?
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Always try to  describe things  in

!
the simplest manner possible .

The

i description should take symmetry

,
into account ! In this case

, points above
'

* I below the center lie  on  an axis of

symmetry .

It  makes  sense to Uae Cylindrical Polar Coordinates here .

The Z - axis can be the axis  of  symmetry ,
and it's easy to

describe the disk
.



- We 'll put the origin @ the center  of the disk
.

Then :

Z
^

Disk : -2=0
,

OES ' ER
,

O E ¢ ' L2 it

•
,

f Pt .  on  disk : F '
= s 'S + OE

i
.

,

. = s
'

cos  ¢
' Its ' singly t OI

- - - - -

,¥- - - - -7
i T , y

i Pt
, above / below center  of  disk : F = OK tOytZII i

X

§

Sep.  vector : I = F - F '

= - S
'

cos  ¢ ' I - s
' singly t

ZI
da '

-

- s 'd ¢ 'd s
'

toil = f-S
'  205/0 't  512 sin 2/0 't ZZ

I - -

✓ 512

×s'd0
'

= J2

Note : We used Cartesian unit  vectors  in

I
, since 5 depends  on  one  of the

coords  we 'll integrate  over ( of
' ) .

- Before jumping right  into the integral ,
work  out the

integrand:
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- Putting this all together :
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- Now
,

we could just  evaluate this .
But  its worth asking

what we expect the answer to be
.

- Based on the symmetry of the charge  distribution ( it  is

spread evenly over the disk ) and the point  where  we're

evaluating E
,

we expect to get  an electric field pointing

straight  up  or  down along that symmetry axis .
So E

should have a Z - Component ,
but  no  x - or  y - component .

- Can  we see this  in  our  integral ? Look @ the x - component :

EXLQQZ ) = 4÷¥ez fords , (-s"cos¢#
( s

' '

+ z 2) 312

The only of
'

- dependence  in the integrand is a factor

of cos ¢
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which gets  integrated over  a full period : O → Zit .
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- The same  is true for Ey .
So we have :
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- To  evaluate the integral over s
'

,
we make  a change - of -

variable :
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- We have to be careful here
. Our  integrand was explicitly

positive : s
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And

if  we add up lots of  non - negative  numbers ,
the result  must

atso be  non - negative . But Z could be positive ( above the

center ) or  negative L below the center ) , so we  must write

the result  of the s
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integral as
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as expected .



- Does  our  answer make sense ? The direction seems right ,

but how  else can we check  our  work ?

- Imagine  you were above the disk ( z > O ) & you moved

very , very far away .
Far compared to  what ? Since the

only other length here is the radius of the disk
,

"

Very far  away
" must  mean Z > > R . Then :
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- So  when Z >  > R
,
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- The further  away we  more
,

the  smaller gravities like 12412-4

become compared to 124-22
, and the more E looks like

the electric field for  a point  charge Q . And that

makes sense : when  we're far away ( z > > R ) the disk

does look like  a point , so  its electric field shaky

look  approximately like the electric field for  a point

charge .



- What  else can  we learn from  our  result ? What  if
,

instead

of  moving very far  away
,

we Zoomed in  very close to the

disk  so that ZUR ? Then :

f powers (E)
"

e: higher

Z

¥z=r¥¥ = Ex ( I - I Eat . . . )

↳ Elo
,

o
,

zur ) =

÷¥zfZ
- E t III t . . . ) I

HI

- If  we  were  
realty

close  - say ,
742=10-6 or  any other

value much less than I - this  is :
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- The factor Zazi is 1  above the disk ( Z > O ) and - I

below the disk I ELO ) .

So
, just fractionally above the

disk E = ( Need E
,

while just below  it  is E- = - ( OTZEDE .

It  is  approximately constant  very close to the disk
,

and

has the same  magnitude  on both  sides
,

but  it abruptly

flips  direction  when we go from one  side to the other !
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- This  is  our first  encounter with an  important property of

electric fields produced by charge distributions : they can

be  discontinuous at points  where there is a surface

charge  density .


